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A solid sphere falling through a Bingham plastic moves in a small envelope of fluid 
with shape that depends on the yield stress. A finite-element/Newton method is 
presented for solving the free-boundary problem composed of the velocity and 
pressure fields and the yield surfaces for creeping flow. Besides the outer surface, solid 
occurs as caps at the front and back of the sphere because of the stagnation points 
in the flow. The accuracy of solutions is ascertained by mesh refinement and by 
calculation of the integrals corresponding to  the maximum and minimum variational 
principles for the problem. Large differences from the Newtonian values in the flow 
pattern around the sphere and in the drag coefficient are predicted, depending on the 
dimensionless value of the critical yield stress Yg below which the material acts as 
a solid. The computed flow fields differ appreciably from Stokes’ solution. The sphere 
will fall only when Yg is below 0.143. For yield stresses near this value, a plastic 
boundary layer forms next to the sphere. Boundary-layer scalings give the correct 
forms of the dependence of the drag coefficient and mass-transfer coefficient on yield 
stress for values near the critical one. The Stokes limit of zero yield stress is singular 
in the sense that for any small value of Yg there is a region of the flow away from 
the sphere where the plastic portion of the viscosity is at least as important as the 
Newtonian part. Calculations for the approach of the flow field to the Stokes result 
are in good agreement with the scalings derived from the matched asymptotic 
expansion valid in this limit. 

1. Introduction 
Viscoplastic fluids combine the behaviour of rigid solids and non-Newtonian 

viscous liquids by differentiating between physical regions where these descriptions 
hold according to  criteria based on the level of stress in the material. For low stress 
values the material will not deform, but beyond some critical value i t  flows as an 
inelastic non-Newtonian fluid. The fluid mechanics, as well as mass and heat 
transport, of viscoplastic materials is becoming increasingly important, especially 
with the discovery that many multicomponent fluids, such as foams, slurries, 
suspensions, emulsions and fermentation broths, are viscoplastic. 

The Bingham-plastic constitutive equation (Bingham 1922 ; Oldroyd 1 9 4 7 ~ )  is the 
most often used model for a viscoplastic material. Here regions of rigid-solid and 
inelastic-fluid behaviour are separated in terms of von Mises’ yield condition. The 
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constitutive equation relating the deviatoric stress T* and rate-of-strain +* tensors 
is given as (Oldroyd 1947a; Bird, Armstrong & Hassager 1977) 

T* = (,,++) +* (1.la) 

+* = 0 (T* < 7y), ( 1 . l b )  

where T* and ?* are the second invariants of the tensors, defined as 

and vo and 7y are called the plastic viscosity and the yield stress respectively. 
Equations (l.lcz, b)  define two distinct regions of flow, In the first the invariant 7* 

exceeds the yield stress and the material flows with a non-Newtonian viscosity 
function defined as q(j*)  e ~ ~ + 7 ~ / j * ,  In the second the stress is less than the yield 
value and the material behaves as a rigid solid. The fluid and solid regions are 
separated by a distinct yield surface. 

The composite form of the viscosity points to an important characteristic of 
vissoplastic flows. When the shear rates are large so that f *  % ~ ~ / q ~  the fluid behaves 
as a Newtonian liquid; however, as j *  becomes small the plastic contribution ~ ~ / j *  
will become important, irrespective of the magnitude of the yield stress. This idea 
is crucial to  understanding the asymptotic behaviour of complex flows as the yield 
stress tends either to very small values or to  the critical value for a rigid plastic 
material. Although substantial research has been directed at deriving closed-form 
solutions €or Bingham fluids in rectilinear and lubrication flows (see Bird, Dai & 
Yarusso 1983), few solutions have been presented for complex flows with streamlines 
that are not rectilinear. The most notable omission is the calculation of the creeping 
flow about a sphere in a large sea of fluid, where the formation of a rigid plastic region 
around the sphere has very pronounced effects on the flow field, Our aim is to present 

rigorous numerical solution for this problem, and in doing so to supply an algorithm 
for the Calculation of other viscoplastic flows. Besides being of practical importance 
in understanding the fluid mechanics and species transport in this abundant class of 
materials, these calculations may form a basis for a new method of measuring the 
material properties yo and 7y used in the Bingham constitutive model. 

Volarovich (1053) was the first to  realize that a sphere falling in a Bingham plastic 
must do so in a small envelope of fluid separating the body from rigid solid in which 
the stress does not exceed the yield criterion. Valentic & Whitmore (1965) put forth 
a crude approximation for the fall velocity of a sphere by using the idea of Andres 
(1960) that the solid is surrounded by a liquid ‘sphere of influence’ over which only 
viscous forces cause drag. Other regions of solid can exist for an object falling in a 
Bingham plastic. For example, the stagnation points that must exist in the flow a t  
the front and back of the sphere guarantee that solid must form in these regions for 
any finite value of the yield stress, as recognized by Yoshioka, Adachi & Ishimura 
(1971). 

The fluidity of the material adjacent to  the sphere is a result of the stress created 
by the sphere’s weight. No motion is expected for nearly neutrally buoyant particles. 
The state of incipient motion defines a critical yield stress that can be estimated by 
calculations for an ideal rigid plastic with a yield criterion (see Hill 1950). Then the 
onset of fluid motion corresponds to the development of a slip surface in the plastic 
material. Axisymmetric problems in ideal plasticity, like the one needed to consider 
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a suspended sphere, are governed by elliptic-equation sets (Symonds 1949) and have 
not been solved previously. In planar geometries, the analogous equations are 
hyperbolic, and slip lines develop along the characteristic direction in which the 
material undergoes purely shear deformation, with the magnitude of the stress equal 
to the yield value. The motion of the sphere appears as a discontinuity in the velocity 
along this slip surface. Symmetry conditions can force slip lines to intersect planes 
where the motion must be pure compression or extension, as is the case along the 
axis of motion of a sphere. Slater (1977) has shown that the yield surface in a planar 
geometry must meet the symmetry plane at an angle of in. No extension of this result 
to an axisymmetric problem is available. 

Oldroyd ( 1947 b) developed a plastic boundary-layer theory to splice together the 
discontinuity in velocity predicted for an ideal rigid plastic material and the concept 
of fluidity in a Bingham viscoplastic model. He envisioned the fluid region to be 
divided into two parts: a thin layer adjacent to the solid in which both viscous and 
yield stresses were important, and a region next to the rigid plastic in which the 
yield-stress term in the viscosity was dominant. He termed the first region adjacent 
to the solid a plastic boundary layer and scaled the field equations and boundary 
conditions accordingly. We extend this analysis to the axisymmetric flow around a 
sphere to determine the proper scalings near the critical yield-stress value. 

Several experimental investigations have been reported for the flow around a 
sphere falling in viscoplastic fluids (dy Plessis & Ansley 1967; Ansley & Smith 1967; 
Ito & Kajiachi 1969). These concentrated on measuring the drag coefficient for the 
sphere as a function of T~ and 7, for the fluid, and produced relationships between 
the drag coefficient and the effective Reynolds number. To do this, the ratio of viscous 
to yield forces acting on the sphere had to be established to correlate the results with 
Reynolds number. The ratio either was taken to be dependent on the value of the 
yield stress and was fitted experimentally (Ito & Kajiachi 1969), or was assumed to 
be constant and determined by analysis (Ansley & Smith 1967). To do this, Ansley 
& Smith borrowed ideas from the theory of two-dimensional slip lines in a rigid plastic 
and approximated the yield surface for a viscoplastic material as a toroid centred 
at the equator of the sphere with radius R, 4 2 ,  where R, is the radius of the sphere. 
The accuracy of this approximation is discussed later along with a comparison to the 
data for drag coefficient. 

A number of authors (Prager 1954; Yoshioka & Adachi 1971 ; Yoshioka et a.!. 1974; 
Duvault & Lions 1976) have developed variational principles which hold for the 
inertialess flow of a Bingham fluid. Yoshioka et a.!. (1974) used them to compute upper 
and lower bounds on the drag coefficient. The accuracy of these computations was 
poor - the bounds differed by 50 % - because of the crude forms used for the 
approximations to the velocity and stress fields and the shapes of the yield surfaces. 
Glowinski, Lions & Tremoliers (1981) were the first to use variational methods 
systematically to compute viscoplastic flows accurately by combining variational 
inequalities with either finite-element or finite-difference numerical approximations 
and effective minimization techniques. The application of these methods has been 
limited to the calculation of the rectilinear flows in circular and rectangular ducts 
and two-dimensional confined flows. Bercovier & Engelman (1980) developed a 
finite-element/penalty-function method for computing the flow of an inelastic fluid 
with a viscosity chosen to model the behaviour of a Bingham plastic by replacing 
rigid plastic regions with an extremely viscous fluid past a transition in the shear rate. 
Although this approach eliminated the need for the calculation of the exact location 
of the yield surfaces, it introduced the complication that fine finite-element 
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discretizations were needed in the a priori unknown regions where the artificial 
viscosity function increased drastically. 

Approximating a Bingham plastic by an inelastic non-Newtonian fluid with a 
smoothly varying viscosity, as suggested by the numerical method of Bercovier & 
Engelman (1980) and by the analysis of lubrication flows by Lipscomb & Denn (1984), 
leads to the conclusion that the behaviour in flow around a sphere for a Bingham 
plastic with very small yield stress can be well approximated by Stokes flow. 
Bhavaraju, Mashelkar & Blanch ( 1978) formulated a regular perturbation analysis 
about zero yield stress and neglected the presence of yield surfaces to  calculate the 
drag and mass transfer from a sphere in a fluid with low yield stress. Although Stokes 
flow certainly is a solution when the yield stress is identically zero, it is not clear that  
the behaviour of the solution is regular as ry approaches zero and that the 
perturbation series of Bhavaraju et al. is appropriate. The variational formulations 
have been used by Duvaut & Lions (1976) to prove that a unique solution exists for 
the creeping flow (Re = 0) of Bingham plastics in both interior and exterior domains. 
These authors have also proved that the solution of the Bingham-plastic problem 
approaches the Newtonian result as the yield stress approaches zero. However, their 
argument presupposes that the Newtonian result is square-integrable. This is not the 
case for a sphere in an unbounded fluid, and the variational result suggests that  the 
solution for a Bingham fluid with vanishingly small yield stress should differ from 
the Newtonian result, at least a t  large distances from the sphere. 

We solve for the velocity and pressure fields in the fluid portion of the Bingham 
material and for the shape of the yield surfaces for the creeping flow around a sphere 
in an unbounded Bingham plastic material. The calculations are based on a Galerkin 
finite-element algorithm developed for the solution of elliptic free-boundary problems 
(Ettouney & Brown 1983). I n  our formulation the field equations and boundary 
conditions are first transformed to a fixed domain by a mapping involving the 
unknown shape functions describing the locations of the yield surfaces. The new 
equation set for the coupled field and surface equations is reduced to a nonlinear 
algebraic equation set by a Galerkin/penalty finite-element formulation. This 
algebraic set is solved by Newton’s method, which iterates simultaneously for all 
unknowns. 

The formulation of the free-boundary problem for flow around a sphere is presented 
in $2 along with the variational integrals which will be used in our assessment of 
numerical accuracy. The finite-element analysis is described in $3. Our results for the 
velocity field, shapes of the yield surfaces, the drag coefficient, and a mass-transfer 
coefficient in the limit of high PBclet number are given in $4. The finite-element results 
are compared in $5 with the scalings predicted by the plastic boundary-layer theory 
valid for large yield stress and with a matched asymptotic analysis for small values 
of this parameter. 

2. Formulation 
We consider the creeping flow of a solid sphere of radius R, falling in an infinite 

medium that behaves rheologically as a Bingham plastic. The flow is assumed to be 
axisymmetric, with the sphere moving along the z-axis parallel to the direction of 
gravity. The flow field and shapes of the yield surfaces are represented in a spherical 
coordinate system ( r * ,  8,#) with its or; I at the centre of the sphere. We limit our 
calculations to the creeping-flow limit ( I  = 0) so that the velocity and pressure fields 
have symmetry about the equatorial plane 8 = and the two polar caps of solid 
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I 

I 
FIGURE 1. Plastic and solid regions for the flow surrounding a 

solid sphere falling in a Bingham plastic material. 

on the sphere have identical shape. The calculations are performed in the upper-right 
quadrant 0 < 8 < in. The different portions of the flow domain and the yield surfaces 
attached to the sphere and surrounding the fluid are shown in figure 1. 

Dimensionless equations are formed by scaling velocities with the fall velocity Vo 
of the sphere, distances with the radius R, of the sphere, and pressure with the viscous 
stress T,, V,/R,. The field equations governing the motion of the sphere are then 

U.T-UP = 0, (2.1) 

u-v = 0, (2.2) 

1 
C, = - S,*(T-PPS).nds, 

3 Js 
where n is the unit vector normal to the surface and S is the portion of the surface 
of sphere exposed to the fluid and the surface of the solid caps attached at the poles, 
S = aBl, n ab,, in figure 2. The dimensionless pressure has been modified to include 
the gravitational potential pgz, where p is the density of the fluid and g is the 
acceleration due to gravity. The two dimensionless numbers appearing in these 
equations are the Bingham number NB, which measures the ratio of the strength of 
the yield stress to the viscous stress, and the Stokes drag coefficient C,; these groups 
are defined as 
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FIGURE 2. Sample finite-element mesh and notation for boundaries represented in (a )  the 
original and ( b )  the transformed coordinate systems. 

where F is the external force acting on the sphere. For a sphere in free fall 

where p s  is the density of the sphere. 

externally applied force, and is called the yield-stress parameter Yg : 
A third dimensionless group can be formed from the ratio of the yield stress to the 

which is related to NB and C, by 

NB SC, Yg. (2.9) 

The shape of the outer yield surface surrounding the sphere and fluid is represented 
by the radial shape function r =f2(S), 0 < 0 < in, and the shape of the solid cap at 
the top pole of the sphere is given as r = fl(6), 0 < 0 < 8,. The boundary conditions 
on the surface of the sphere and on any solid material attached to it are 

(2.10) u = o ( r  = 1, el < 6 G in) ( r  =fl(e), o < e < el). 
The solid material a t  the outer yield surface r =f2(e) and beyond moves rigidly 
according to 

The symmetry boundary conditions on the equatorial plane are 

V = - d  ( r  =f,(e), o < e G in). (2.11) 

= 0, w, = o (1 < r <f2(in), 6 =in). (2.12) ae 
Equations (2.1)-(2.12) define the free-boundary problem, which is solved here in terms 
of the velocity and pressure fields in the fluid region and the shapes of the yield 
surfaces fi(e) and fi(e). 

The occurrence of in the denominator of the apparent-viscosity function in (2.3) 
causes numerical difficulties as a yield surface is approached, since + approaches zero 
there. To mitigate this difficulty, several authors (Bercovier & Engelman 1980; 
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Glowinski et al. 1981) have suggested introducing a 'regularization parameter' PR into 
the constitutive equation as 

(2.13) 

The definition (2.4) of the boundary between the solid and fluid regions must be 
modified to 

(2.14) 

Glowinski et al. (1981) have shown that the solution of (2.1)-(2.3) with (2.13) and 
(2.14) converges to the solution for a Bingham plastic as PR+O. The convergence 
of numerical calculations in this limit is considered in $4. 

Two different formulations exist for the solution of (2.1)-(2.14) depending on the 
choice of independent parameters. In  the first the velocity of the sphere is set by 
specifying NB, and the calculation of the drag coefficient is decoupled from the other 
aquations. In the second formulation Yg is taken as the independent parameter, and 
the values of NB and C, are computed by solving (2.9) simultaneously with the field 
and constitutive equations, boundary conditions and the expression for the drag 
coefficient. This is the approach used in our numerical calculations. 

The first formulation mentioned above is the basis for minimum and maximum 
principles that describe the creeping flow of a Bingham plastic (Prager 1954; 
Yoshioka & Adachi 1971). These two variational principles are stated as follows for 
a flow in a fluid volume V bordered by a surface S, with normal n on which the 
velocity field is set : 

Minimum principle 
Among all velocity fields with piecewise-continuous first derivatives which satisfy the 
equation of continuity and the boundary conditions on S,, the solution to the 
Bingham-flow equation minimizes the dimensional expression 

H* = J, (q,, j*' + 2~~ ?*) d V .  

Maximum principle 
Among all stress fields with piecewise-continuous first derivatives that 
equations of motion, the actual stress field T* maximizes the expression 

(2.15) 

satisfy the 

(2.16) 

Both expressions (2.15) and (2.16) take the same limiting value when evaluated with 
the velocity and stress fields that satisfy the Bingham-plastic constitutive equation. 
We use the calculation of H* and K* as a test of accuracy for our numerical algorithm. 

3. Finite-element analysis 
The free-boundary problem defined by (2.1)-(2.14), written in the spherical 

coordinate system ( r ,  8, $), is transformed to a fixed domain in the non-orthogonal 
coordinate system (6,  x, $) shown in figure 2 by mappings involving the shape 
functions f,(O) and f,(O) for the two yield surfaces. The solid cap attached to the 
pole of the sphere is transformed to the upper fourth of a unit sphere ( E  = 1 ,  
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Element distribution 
Number of 

Mesh azimuthal direction radial direction degrees of freedom 

B1 16 14 2217 
B2 19 18 3320 
B3 21 25 5016 

TABLE 1 .  Finite-element meshes 

0 < x < in), and the outer yield surface is mapped to a spherical surface at 5 = 2 
(0 < x ,< in). The mappings between the original and transformed coordinates are, 

The equations defining the free-boundary problem can be explicitly written in the 
non-orthogonal coordinate system defined by (3.1)-(3.2) by constructing the base 
vectors, reciprocal base vectors and the gradient operator in this new system, as done 
by Ettouney & Brown (1983). We avoid developing these much more complicated 
differential equations by formulating the Galerkin weighted residual integrals for the 
numerical approximation using the original coordinate system ( r ,  8 ,$ )  and then 
making a change of variables to ( E ,  x, @). The change of variables involves application 
of the chain rule to  the derivatives arising in the original differential equations and 
the use of the Jacobian determinant of the transformation for the change of 
integration variables in the residual integrals. This scheme has the advantage that 
the components of velocity in the original coordinate system vr and vo are kept as 
the dependent variables. 

The transformed domain is discretized into quadrilateral elements, as shown in 
figure 2(b). The three meshes used in this analysis are listed in table 1 .  The 
intermediate mesh B2 is shown in figure 3 for the yield surfaces calculated for 
Yg = 0.1. The components of velocity and the pressure field in the fluid region are 
interpolated using the biquadratic/penalty-function method developed by Bercovier 
& Fortin (1979) and first applied in viscoplastic calculations by Bercovier & 
Engelman (1980). In  this approach the velocities are approximated by expansions 
of Lagrangian biquadratic polynomials {Oi (6 ,  x)} as 

where N is the total number of biquadratic functions, and the coefficients {ui, va} are 
to be determined. The pressure field in the penalty-function formulation is 
approximated as P = -hV*v, where h is the penalty parameter, and is substituted 
into the momentum equations to eliminate P as a variable. The Galerkin weighted 
residual equations for the momentum equations are 

:V(6,0i)dV = 0, (3.4) 



Creeping motion of a sphere through a Binghum plastic 227 

0 '  
I 

1 
I 
2 

I 
3 

FIQURE 3. The finite-element mesh B2 in the original coordinate system 
for the calculation with Yg = 0.1. 

where k = r and 8, for the two components of the momentum equation, and 6 is the 
unit tensor. All integrals in (3.4) are evaluated using 16-point Gaussian quadrature 
in each element, except the term involving A, where 4-point quadrature is used, as 
suggested by Bercovier & Engelman (1979). When this reduced numerical integra- 
tion is applied to  the resulting term in the Galerkin equations, these authors show 
that the penalty formulation converges to the weak solution of the creeping-flow 
equations as A-l approaches zero. Bercovier & Engelman (1979) also suggest taking 
A-' = 0.01h2, where h is a characteristic length for the element spacing. We found 
that using A-' = 1 x for finer meshes B2 and 
B3 reproduced the exact solution for Stokes flow around a sphere within a relative 
error of less than 0.1 yo. 

The shapes of the yield surfaces are approximated by expansions of one-dimensional 
Lagrangian quadratic functions {Xi(x)} as 

for the coarse mesh B1 and 1 x 

M .  M ,  

where M ,  and M ,  are the numbers of quadratic functions defined along each yield 
surface. The unknown coefficients Cfli, f,i} in the expansions (3.5) are found by forcing 
the residual equations formed from the yield criterion (2.14) to zero on each surface: 

( y -  F(PR, NB)) Xi dS = 0, 
Js, 

where F(P ,NB) is defined in (2.14) and S, is either the cap (as,,,) or the outer 
(as,, , n a&, ,) yield surface. The contributions to these integrals from each element 
along the boundary are evaluated using four-point Gaussian quadrature. 

Introducing the regularization parameter into the constitutive equation prevents 
the velocity field from strictly satisfying the condition that y = 0 on either yield 
surface at  8 = 0. We account for this by placing a ray of small (0 < x < 0.01) elements 
next to  the axis of symmetry and specifying the slopes df,/dx and df,/dx of the yield 
surfaces to be zero in these elements, instead of using (3.6). A reduction in the angular 
size of these elements by a. factor of two (0 < x < 0.005) had no perceptible effect 
on the finite-element results. The angle of attachment 8, of the solid cap to the sphere 
is determined by applying the yield criterion (2.14) exactly a t  8 = 8, on the sphere. 
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Regularization parameter P, 
(4 

I I 
Y,  = 0.1 

FIGURE 4. Dependence of (a) drag coefficient C, and ( b )  shape of the outer yield 
surfacef,(B) on the value of the regularization parameter pR. 

The value of the drag coefficient C, was determined from the integral (2.5) using 
the pressure field determined from the finite-element velocity field by the smoothing 
procedure suggested by Hughes, Liu & Brooks (1979). This method consists of forcing 
to zero the modified weighted residual equations formed as 

where p(5, x) is a bilinear Lagrangian basis function, and the pressure field P(5, x) 
is interpolated in the finite-element form 

L 

This procedure gave estimates for the pressure field in Stokes flow accurate to  within 
one percent relative error. 

The entire set of nonlinear algebraic equations formed from the residual equa- 
tions (3.4), (3.6) and (3.7) along with the boundary conditions on velocity deter- 
mine the coefficients {ui, wi, Pi, fii, fit, C,, 0,) for given values of Yg and PR. This 
( 2 ( N +  1) + MI + M ,  + L)-dimensional equation set is represented here as 

R(u? p,f,,f,, c,, yg’ pR) = 0 ,  (3.9) 
and is solved by Newton’s method with the partial derivatives in the Jacobian matrix 
computed by analytical differentiation of the residual equations, as described by 
Ettouney & Brown (1983). The linear equation set a t  each Newton iteration was 
solved by Gaussian elimination using a version of Hood’s (1976) frontal storage 
technique modified specifically for the matrix structure resulting from the mix of field 
and interface variables in this free-boundary problem. 

One of the most difficult aspects of the numerical problem was obtaining sufficiently 
accurate first approximations for convergence of Newton’s method in the presence 
of the yield surfaces. We did this by constructing a fictitious free-boundary problem 



Creeping motion of a sphere through a Bingham plastic 229 

for the conditions P,+m and Yg = 0.1 where the velocity and pressure fields are 
exactly the results for Stokes flow and the shapes of the yield surfaces are found from 
the conditions that T on the surface is a constant and the velocity profiles are specified 
exactly to the Stokes solution. From this first guess, first-order continuation (Brown, 
Scriven & Silliman 1980) in the composite parameter p, = 3C,/P, was used to move 
continuously in the parameter space toward a solution for the Bingham plastic as 
p, became large (PR+O). Calculations of the drag coefficient and the shape of the 
outer yield surface with Yg = 0.1 and p, up to 1 x lo6 are shown in figure 4 for mesh 
B2. Based on the convergence of these results, we used the highest value of pR in 
all subsequent calculations, where different values of the yield stress were obtained 
using continuation in Yg. 

The stream function $(r ,  8) is computed by finite-element solution of the equation 

V%,h = 2-32,, sin8+2vr cosB+sind 2 - r  - , G 2) 
where the stream function is defined by 

(3.10) 

(3.11) 

4. Finite-element results 
The range of yield stress, measured by Yg, between an arbitrarily low value (0.001) 

and values close to the limiting value Yg = Ygd for a motionless sphere have been 
computed using the finite-element meshes listed in table 1. The calculations using the 
coarser meshes B1 and B2 were performed on the Honeywell 6180 computer at MIT. 
Calculations with mesh B3 were performed on the Cray-1S computer at Los Alamos 
Scientific Laboratory. The discretizations B1 and B2 give the same results for the 
range 0.1 < Yg < 0.13; however, the formation of a plastic boundary layer next to 
the sphere for higher values of Yg made the calculations inaccurate with the coarser 
mesh. Calculations with the mesh B2 were continued to Yg = 0.135. The fhest mesh 
B3 was used to examine the solution behaviour as Yg approached zero. The accuracy 
of the finite-element results was assessed by comparing the values of the variational 
integrals H = H*/nqo R, q and K = K*/nq, R, with each other and with the more 
approximate calculations of Yoshioka et al. (1971). The values of the two integrals 
computed from the finite-element solutions are indistinguishable when plotted as 
functions of the Bingham number, shown as figure 5 .  Values of the integrals computed 
from the finite-element solutions are given in table 2. The results of Yoshioka et al. 
had a large difference between the upper and lower bounds. The values of the integrals 
computed from our finite-element results consistently fall on or near the value of H 
computed from the earlier analysis for N B  > 1. The finite-element results for the drag 
coefficient, velocity fields and yield surfaces and the convective mass- transfer 
coefficient are presented below. 

4.1. Drag coefficient 
The dependence of the drag coefficient on the yield-stress parameter Yg is shown in 
figure 6. The drag coefficient tended to infinity, i.e. the sphere ceased to move at a 
value of Yg where the yield forces balanced the effects of gravity. The value for this 
limit Ygc x 0.143 has been computed using the correlation between C, and Yg derived 
by the plastic boundary-layer analysis presented in 9 5.  
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IKYoshioka el al. (1971) 

finite-element results - 
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10-3 10-2 10-1 I 10 102 1 0 3  

Bingham number N ,  

FIQURE 5. Comparison of values of variational integrals H and K computed using the finite-element 
method (-) and the approximate methods of Yoshioka et a2. (1971). The values of the integrals 
H and K computed using the finite-element results are indistinguishable. The error bars for the 
approximate calculations indicate the difference between H (upper bound) and K (lower bound) 
respectively. 

yg NB CS H K NShNi3e fl(0) 81 f m  fi(t4 
0 1 6.00 6.00 1.00 0 0 co m 

7.37 7.36 1.041 1.000 0 23.19 33.10 0.001 0.007 1.17 
0.01 0.108 1.74 12.41 12.41 1.169 1.003 0.010 7.331 10.59 
0.036 0.747 3.46 28.97 28.96 1.379 1.016 0.052 3.781 5.520 
0.06 2.299 6.39 59.44 59.38 1.570 1.031 0.086 2.806 4.134 
0.088 8.047 15.24 156.65 156.65 1.857 1.051 0.149 2.188 3.250 
0.1 14.91 24.85 265.25 265.25 2.031 1.052 0.180 2.038 3.013 
0.11 27.36 41.45 455.97 456.06 2.223 1.060 0.204 1.900 2.813 
0.12 59.59 82.77 937.95 937.83 2.503 1.069 0.232 1.765 2.626 
0.13 197.5 253.2 2950.1 2948.3 3.024 1.080 0.264 1.637 2.439 
0.133 340.7 426.9 5031.0 5021.8 3.301 1.084 0.276 1.591 2.373 
0.135 544.6 672.3 7942.1 7899.3 3.557 1.087 0.287 1.555 2.322 

ot 

t Exact results from Stokes solution. 

TABLE 2. Solution parameters for selected values of Yg. Parameter values used in calculations were 
asfollows. Mesh B1: 0.04 < Y, < 0.100, A = lo6, PR = lo6. Mesh B2: 0.100 Q Yg < 0.117, A = los, 
P R  = 10'; 0.117 < Yg < 0.130, h = lo", PR = 10"; 0.130 < Yg < 0.135, h = 4~ lo', PR = 10". Mesh 
B3: 0.001 < Yg < 0.04, h = lo", pR = lo6. 

The numerically computed values of drag coefficient for low values of Yg reached 
nearly a constant slope except for very small values of Yg where a rapid transition 
occurred to  the value of C, for a sphere falling in a Newtonian fluid. The finite-element 
results are compared in figure 7 to the experimental measurements of Ansley & Smith 
(1967) as a function of the Bingham number N,. The agreement is good considering 
the limited reproducibility of the experimental results. The upper and lower bounds 
computed from the variational integrals by Yoshioka et al. (1971) are shown again 
for reference. 



Creeping motion of a sphere through a Binghum plastic 231 

I 03 

G 
.- 8 
- 1 0 2  

$ 
8 
i? 

s 10 

6i 

M 

-0 

-Y 

I 

Yield-stress parameter Y,  
5 

FIQURE 6. Dependence of the Stokes drag coefficient on the yield-stress parameter YE. 

103 

i; 
102 

.- 
4 
8 
2 

s 10 

6i 

M 

‘0 

Y 

1 

I I I I I 
0 experiments, Ansley & Smith (1967) 

variational formula, I Yoshioka et al. (1971) / 
A - finite-element results 

k 

I 
10 102 

e T/ (; I 

10-2 10-1 1 
Bingham number N ,  

3 

FIGURE 7. Dependence of Stokes drag coefficient on the Bingham number. Finite-element results 
are represented by the continuous curve and the experimental data of Ansley & Smith (1967) by 
(0). The upper and lower bounds calculated by Yoshioka et al. (1971) are shown as error bars. 

4.2. Velocity $elas and yield surfaces 

The streamlines computed for four values of the yield-stress parameter Yg are shown 
in figure 8. Streamlines are only shown inside the fluid region for Yg 4 0, but extend 
as straight vertical lines in the solid, corresponding to rigid translation of this material 
when viewed from the sphere. For Yg = 0 the fluid region extends to infinity and the 
streamlines are never straight. For the lowest value of Yg (0.036), the streamlines are 
quantitatively different from the Stokes solution everywhere in the fluid region ; this is 
especially evident from comparing the spacing of the streamlines along the symmetry 
plane 0 = i x .  The outer yield surface for this yield stress is approximately 4R, away 
from the sphere at this symmetry plane. The angle of departure for the outer yield 
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FIGURE 8. Streamlines for flow around a sphere for (a) Stokes flow ( Yg = 0 ) ;  ( b )  Yg = 0.036; (c) 0.1 ; 
(d )  0.135. Streamlines are only shown inside the plastic region for cases with non-zero yield stress, 
and should be continued 8s vertical lines in the rigid solid. 
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FIGURE 9. Shapes of the polar solid caps for the three non-zero values of Y, listed in figure 8. 
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FIGURE 10. Radial profiles of the azimuthal velocity field at 0 = in 
for several values of Yg and for Stokes flow. 

surface at  the top and bottom of the sphere is nearly in, as suggested by the theory 
for planar slip lines of Slater (1977) for the angle of intersection of a slip line with a 
plane of symmetry. The solid cap at  the top of the sphere is just visible in the plots 
for the largest two values of Yg ; these caps are shown separately in figure 9. 

Increasing the yield-stress parameter Yg decreased the size of the fluid region, as 
demonstrated by figures 8 (c) and ( d ) ,  which are drawn on the same scale as (a) and ( b ) .  
The flow pattern near the sphere stays approximately the same with increasing 
yield stress, except for an increase in the steepness of the velocity gradient next to 
the solid, suggesting the formation of a boundary layer. Increasing the yield-stress 
parameter Yg closer to its limiting value, or equivalently computing for very large 
values of NB, is not expected to change the shape of the outer yield surface 
appreciably. Instead, the yield surfaces reach limiting shapes, similar to the results 
for Yg = 0.135 (NB = 700) with the outer surface detached from the sphere. Sur- 
prisingly, Ansley’s picture of the outer surface as a toroid is close to this finite- 
element calculation. 

The formation of the boundary layer is better seen in the radial profiles of the 
angular velocity vg at 0 =in shown in figure 10 for several values of Yg. The 
qualitative difference between the profiles for non-zero yield stress and the Newtonian 
result is striking. The presence of the outer yield surface causes the azimuthal velocity 
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Newtonian 
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(b)  

FIGURE 11 .  Contours of the second invariant of the rate-of-strain tensor ( a )  for Stokes flow; and 
for the Bingham results with ( b )  Yg = 0.001; (c) 0.01; (d )  0.036; ( e )  0.1. The scale of the lengths 
in the last case has been magnified by a factor of two to show the detail. 

to go through a minimum between the sphere and this surface in order to conserve 
mass. This minimum is not present for Yg = 0, where the velocity goes monotonically 
from zero at the sphere to - 1 as r+m. The velocity minimum increases and the 
gradient sharpens as the yield stress approaches the critical value for the just static 
sphere. The velocity minimum decreased and shifted to larger values of r as the yield 
stress was decreased. The singularity in the velocity field associated with the 
approach to the Stokes limit is evident from figure 10. For Yg = 0.001 the slope aw,/ar 
is similar to  the Newtonian curve, but the magnitude of the velocity is shifted because 
of the effect of the plastic portion of the viscosity on the flow away from the sphere. 
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The flow field differs from the Newtonian solution for most of the flow domain, even 
when the drag coefficient approaches the Stokes limit. These differences are explained 
more precisely by the matched asymptotic analysis presented in $5.2. 

Contours of the second invariant of the rate-of-strain tensor 7 are shown in figure 11 
for the Newtonian- and Bingham-fluid models. All the profiles are smooth, 
indicating the quality of the numerical approximations to the velocity field and its 
gradients. The minimum in the angular velocity for the Bingham-fluid profile causes 
a qualitative difference in the rate-of-strain contours for the two models. For a 
Bingham fluid a small torus centred on the symmetry plane exists where 7 is small 
relative to the values slightly closer to the sphere. For a fluid particle the motion in 
this torus is close to the sum of a rigid translation in the direction of flow and solid-body 
rotation, driven by the high shear rates experienced closer to the surface of the sphere. 
A perfectly rigid rotation is impossible in the axisymmetric configuration, except 
exactly at 0 = in. The shifting of the velocity minimum away from the sphere with 
decreasing Yg is obvious by comparing figures 1 1  ( d )  and ( e ) .  

The approach of the flow field for the Bingham fluid to the Stokes result (figure 11 a )  
is shown by figures l l ( b )  and ( c ) ,  for Yg values of 0.001 and 0.0103 respectively. 
The result for the lowest value of the yield stress is quite similar to the Newtonian 
result over the portion of the flow domain shown (0 < r < 6). The influence of the 
plastic portion of the viscosity is limited to distances farther from the sphere. At 
Yg = 0.0103 the flow field at distances less than two radii from the sphere was altered 
by the non-Newtonian viscosity and the torus of almost-rigid-body rotation had just 
appeared. 

4.3. Mass transfer at high Pe'clet numbers 
The changes in the velocity field adjacent to the sphere have pronounced effects on 
the predictions of mass and heat transfer from the sphere to the surrounding fluid. 
To demonstrate this we compute the mass-transfer coefficient for transfer of a dilute 
species from the surface of the sphere to the surrounding fluid at infinite dilution. 
The calculation is performed in the limit of high PQclet number NPe = V, R,/D, where 
D is the mass diffusivity, so that the gradient of concentration is confined to a thin 
concentration boundary layer adjacent to the sphere. If the shielding of the poles of 
the sphere by the small solid caps is accounted for, the expression for the Sherwood 
number reported by Baird & Hamielec (1962) can be used directly as 

where NSh = 2 4 ,  k,/D in which k ,  is the mass-transfer coefficient. Values of NSh NF$ 
computed using the velocity gradients from the finite-element calculations are 
displayed as figure 12. The Newtonian value of the coefficient 0.991 reported by Baird 
& Hamielec (1962) is also shown. At the critical yield stress Yg = Ygd z 0.143, the 
PQclet number tends to zero faster than the integral and the Sherwood number N,, 
approaches zero, as expected. 

5. Asymptotic analysis of high and low N ,  
5.1. Plastic boundary-layer theory 

As the yield stress approaches the critical value (either NB+m or Yg+ Y,,) viscous 
forces, characterized by the viscosity qo, are important only in a narrow envelope 
surrounding the sphere where 7 is large. Outside this layer the yield-stress contribution 
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FIGURE 12. Dependence of the product NSh N P ~  on the yield-stress parameter Yg. 

to the viscosity dominates the flow, as the stress decreases toward the yield value. 
Oldroyd (19473) developed a set of plastic boundary-layer equations valid in this limit 
for planar flows. In this subsection we present a similar analysis for the axisymmetric 
flow around a sphere. Away from the stagnation points at the poles of the sphere, 
we rescale the radial variable to account for the thin layer of moving fluid as 

r = l+&,  (5.1) 

where B 6 1 is the thickness of the layer where viscous and yield forces are both 
important and 3 is the new radial coordinate. In  this region the dimensionless 
azimuthal velocity is O(1) and the radial velocity is O(s) .  The appropriate scaling on 
the Stokes stream function given by (3.11) is 

(5.2) @ ( r ,  6 )  = eQ(L 01, 

where Q(5,B) is O(1). The invariant 7 is large in the boundary layer, scaling as 

7b.9 6 )  = s- lG(5,  61, 

where G(C, 0) = O( 1 )  and is defined by 

(5.3) 

(5.4) 

with the subscript 5 denoting partial differentiation, i.e. Qs z aQ/aC. 
Substituting (5.2)-(5.4) into the momentum balances (2.1) and constitutive 

equation (2.3) for the plastic region and making use of the scaling relationship (5.2) 
gives the following reduced equations : 

(5.5) 

(5.6) 
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NBe2 = 1 ,  (5.7) 

so that the scaling on the pressure is p(5,O) e2 = n(5, O ) ,  with n(g, 0 )  = O( 1) .  The 
radial component of the momentum-balance equation (5.6) reduces to  the classical 
boundary-layer result al7/a[ = O(e) ,  so that at the lowest order of approximation the 
pressure field in the thin layer of moving fluid is constant with radius. Differentiation 
of (5.5) with respect to 5 yields a fourth-order equation in terms of the stream function 
Q(C,8), to be solved with boundary conditions that match this flow to motion valid 
beyond 5 = 1. The structure of the flow outside the plastic boundary layer is 
connected with the shape of the outer yield surface, and is only known from the 
solution of the entire free-boundary problem. 

Even so, the scalings resulting from the boundary-layer analysis are extremely 
useful for interpreting the results of the finite-element calculations. It is simple to 
show that all the components of the extra stress tensor T are O(1) in the boundary 
layer, so that the force exerted on the sphere is dominated by the pressure, which 
is O ( E - ~ ) .  Then the drag force on the sphere is 

where a and b are constants. Eliminating E from (5.8) using the scaling between the 
boundary-layer thickness and N ,  given in (5.7) and the relationship between N ,  
and Yg yields the form for correlating the drag force as 

a Yg c, x 
(P- YgY' (5.9) 

where a and P are constants. The critical value of Yg is predicted by (5.9) as the limit 

Similarly, the scaling for the Sherwood number in the boundary-layer regime is 

N ~ , ,  N& - €-f - N H .  (5.10) 

For a given Bingham number and sphere radius, the definitions of N B  and NPe give 
NPe - N i l .  This allows elimination of N,, from (5.10) to give 

NSh - NGi. (5.11) 

The validity of the scalings (5.7)-(5.11) predicted by the plastic boundary-layer 
analysis is demonstrated in figure 13. The boundary-layer thickness a t  8 = in, defined 
as the radial distance for the velocity to  change from 0 to - 1 ,  is shown as a function 
of Bingham number in figure 13(a). The slope of the best-fit line for the entire range 
of N ,  is -0.57, in ood agreement with the boundary-layer result, (5.2), of -0.5. 
The product NSh N,g is plotted as a function of the Bingham number in figure 13 ( b ) .  
The slope of the finite-element calculations is 0.16, extremely close to  the prediction 
from the boundary-layer analysis of +. 

The form for the drag coefficient (5.9) can be fitted to  the finite-element results for 
N ,  > 100 with a = 1.031 and /3 = 0.14334, and has less than 1 yo relative error in the 
parameter range. 

Yg+P. 

derived as 

4; 
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FIQURE 13. Comparison of finite-element results with scalings predicted by plastic boundary-layer 
theory (NB+co) for (a) the width of the boundary layer and ( b )  the product Ns,N& The 
finite-element calculations are represented by the symbols (+); the curves are least-square 
regressions of these results. 

5.2. Asymptotic expansion for low N B  
The rapid decrease of the drag coefficient to the Newtonian value as N,+O signals 
a change in the characteristic scaling from the one predicted by (5.9) and the plastic 
boundary-layer theory. The scaling valid for N ,  4 1 is found by a matched 
asymptotic analysis similar to the one used for low-Reynolds-number flow around 
a sphere (Proudman & Pearson 1957; Van Dyke 1964). We are indebted to 
J. F. Brady for his assitance in this analysis. 
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The Stokes velocity field for a Newtonian fluid, 

case - -3r 1 , vo=--[3+4], sin 0 
vr=--[r 2r2 ] 4r2 r 

(5.12) 

is not uniformly valid for large r away from the sphere for any non-zero value of N B  
because the plastic correction to  the viscosity, NB/2y, in (2.3) becomes larger than 
the Newtonian contribution. By analogy with the low-Reynolds-number problem, 
there must be an inner region near the sphere where (5.12) holds, and an outer region 
adjoining the yield surface where the plastic portion of the viscosity becomes 
important. I n  the following analysis we derive the proper scalings for the velocity 
field and drag coefficient valid in this limit. For simplicity, we neglect the presence 
of the solid caps a t  the poles of the sphere. These shrink uniformly with decreasing 
N B  and should not play a dominant role in the scalings for the flow. 

Substituting the Stokes velocity field (5.12) into the viscosity expression (2.3) for 
the Bingham fluid and forcing both the Newtonian and plastic terms to be of equal 
importance suggest rescaling the radial coordinate as 

1 
r* = rN2, (5.13) 

away from the sphere. Then the equation set in this outer region becomes 

v*[( 1 +&) L*] = 0, (5.14) 

?* = v$ = v,* = o on afi,,,, (5.15) 

where ($, $) are velocity components scaled with ViVh and y* is the second invariant 
of the rate of strain computed with the rescaled variables. The solution of the 
free-boundary problem (5.12)-(5.15) must be matched to the Stokes result written 
in the outer variable for r* < 1.  Higher-order approximations are computed as a 
Taylor series in 8 = N k  in a fashion analogous to that presented by Van Dyke (1964). 
Unfortunately, the outer problem defined here is a nonlinear free-boundary problem 
of similar difficulty to  the entire problem solved in $4. Hence we will only use the 
asymptotic analysis to compute the correct scalings as N,+O, and will not pursue 
the calculation of the coefficients. 

The dominant dependence of ;the drag coefficient on the Bingham number is 
recovered by considering the O(N’,) correction to the flow near the sphere. Because 
the plastic term in the viscosity is still small to this order of approximation, the 
correction, which is no more singular than the Stokes velocity field, is easily computed 
a8 

( : 3 = s-cose c2 2--+- , 
2 

(5.16) 

(5.17) 

where the constant C, must be determined by matching this solution to  the outer 
solution for r* 4 1. At large values of r (5.16) reduces to a uniform velocity of 
magnitude sC,, which describes the overshoot observed in the velocity profile (see 
figure 10) due to  the finite size of the flow domain for non-zero NB. 

The leading-order correction to the drag coefficient is computed from the inner 
solution as 

c, = 1+N)3C2’ (5.18) 
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FIGURE 14. Comparison of finite-element results with scalings predicted by the asymptotic theory 
(NB+O) for (a) the drag coefficient and (b )  the product NSh NGi. The finite-element calculations 
are represented by the symbols (+); the curves are least-square regressions of these results. 

The scaling of the Sherwood number for large PBclet number is derived from (4.1) 
as 

NSh N& - 0.991 + c, A&, (5.19) 

where the leading coefficient has been computed from the analysis of Baird & 
Hamilelec (1962) for a sphere in Stokes flow and C, is an undetermined constant. 

The validity of the scalings in (5.18) and (5.19) for NB 4 1 is demonstrated in 
figure 14. The best-fit line through the finite-element results for 0.007 < NB < 0.012 is 

In (C,- 1) = 0.91 + O M  InN,, (5.20) 
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in good agreement with (5.18). The product NSh N G ~  is plotted as a function of N ,  
in figure 14(b). The slope of the finite-element calculations in the range 
0.007 < NB < 0.012 is 0.48, close to the result of 4 predicted by the asymptotic 
analysis. 

5.3. Composite expansions for drag and mass-transfer coeficients 

The scalings predicted by the analyses in 555.1 and 5.2 for high and low values of 
NB have been used to develop a composite scaling for correlating C, and NSh over 
the entire range of yield stress. The scaling (5.8), for the drag coefficient a t  large Yg, 
is rewritten in terms of N ,  as 

C, = a , N , + a , N L + O ( l ) ,  (5.21) 

where a, and a2 are constants. A rigorous joining of the series (5.18) and (5.21) is 
possible only if one of the series is convergent for the whole range of NB (Van Dyke 
1964). Since the exact structure of each series cannot be guaranteed, we proceed only 
by examining a composite expansion formed by adding the results for high and low 

(5.22) NB as C, = 1 + a3 N b  + a4 N ,  + higher-order terms, 

which is uniform in the sense that it contains the leading-order information from each 
asymptotic expansion. 

The constants are determined by fitting exactly the finite-element results a t  the 
lowest (NB = 0.007, C, = 1.167) and highest ( N B  = 544.590, C, = 672.33) values of 
yield stress available. The resulting parameters u3 = 1.874 and a4 = 1.152 give a 
correlation for the drag coefficient that  is accurate to  within 2.5 % of the finite-element 
results for the entire range of N B .  The greatest error occurs a t  N ,  x 14, where neither 
of the asymptotic results can be expected to hold. 

The asymptotic results (5.10) and (5.19) for the Sherwood number for low and high 
values of N B  suggest that  a composite correlation of the form 

NshN& = C 5 ( 1 + c , N ~ + C , N B ) ~ ,  (5.23) 

be fitted to the finite-element results over the entire range of NB by adjusting the 
constants C,, C,, C,. These constants can be determined solely by forcing (5.23) to 
reduce to  (5.10) and (5.19) in the appropriate limits; the resulting constants 
(C,, C,, C,) = (0.9915,3.631,3.663) gave a maximum relative error of 10 yo between 
the correlation (5.23) and the finite-element results for the entire range of N B .  Simply 
fitting the three constants in (5.23) to the calculations for N B  = 0,O.l and 544.5 gave 
(C5, C,, C,) = (0.9915,3.79076,3.75241) and produced a maximum relative error of 
only 0.5 %. Again the maximum deviation occurred near NB = 14. 

6. Conclusions 
Numerical solution of viscoplastic flows as properly posed free-boundary problems 

is a powerful approach to  analysis of complex problems, because i t  yields the precise 
shape and number of the yield surfaces, and gives efficient allocation of computational 
power, by restricting the calculation to only the fluid or plastic region of the material. 
The finite-element/penalty formulation used here also allows systematic mesh 
refinement near the yield surfaces for improved accuracy and efficiency. The quality 
of the solutions presented is high, as brought out by the calculation of the variational 
integrals. These results should replace the very approximate calculations that have 
appeared before for flow around a sphere. 
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The computed values of the drag coefficient presented in table 1, in figure 6 and 
in the correlations in $5 can be used to determine the material properties ry  and q,, 
from measured values of the terminal velocities for falling spheres. This measurement 
does not rely on measuring the yield stress directly at the point for cessation of motion, 
as is the case for measurements based on simpler rectilinear-flow solutions (see Bird 
et al. 1983). Falling-sphere viscometry may be more accurate, especially for materials 
with low yield stress. 

Calculations for the range of yield-stress parameter have pointed out two interesting 
features of the flows occurring a t  the opposite ends of the accessible values of yield 
stress. First, a t  high values of the Bingham number, the motion near the sphere and 
the drag force on it are described well by a plastic boundary-layer theory that 
accounts for the contributions of both the viscous and yield forces to the force balance 
in a thin layer near the sphere. This approach is extremely useful for determining 
the scalings for variables near the critical yield stress, but cannot simply yield 
closed-form results, because of the unknown matching conditions between this layer 
and the fluid adjacent to  i t  that has its motion dominated by the yield-stress 
contribution to the viscosity. The finite-element calculations indicate that the 
scalings for the drag and mass-transfer coefficients predicted by the boundary-layer 
theory are valid for all Bingham numbers greater than 0.6. 

Calculations for decreasing yield stress indicated a change in scaling below 
NB x 0.6. For lower values of N ,  the flow field reduced to  a Newtonian region 
surrounding the sphere and a region where the fluid was viscoplastic far from it. A 
matched asymptotic expansion gave the correction to  the drag coefficient to  be O(NH) 
for N ,  << 1. Up to this order of approximation the only influence of the plastic 
viscosity and the outer yield surface was to increase the drag of the sphere through 
a uniform increase in the velocity field away from the sphere. Small changes in NB 
led to larger changes in C, for small yield stresses. The regular perturbation analysis 
in NB about the Newtonian flow used by Bhavaraju et al. (1978) was inappropriate 
because i t  neglected the role of the viscoplastic region away from the sphere in setting 
the magnitude of the flow adjacent to it. 

Small solid caps at the poles of the sphere formed because of the stagnation flow 
in this region. The caps grew with increasing yield stress. The agreement between 
the correlations for these coefficients based on the analyses neglecting these solid 
regions and the finite-element results suggested that these extra yield surfaces played 
only minor roles in setting the scalings for the flow and transport fields. 

This research was supported by the Fluid Mechanics Program of the National 
Science Foundation, by the Office of Naval Research and by a grant from the 
Department of Energy for use of computer facilities a t  Los Alamos Scientific 
Laboratory. 
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